Biomedical Engineering

Rijksuniversiteit Groningen

Unsplashed background img 2

Deze opleiding

The Master's programme in Biomedical Engineering offers you the opportunity to gain in-depth knowledge of a broad range of topics within the field of medical devices (design) and state-of-the-art health technology.

open_in_newstudy website

locatieGroningen
diplomaMSc
typeregulier, 120 EC
start1 september
taalvolledig English
opleidingsduur2 jaar voltijd
accreditatiesNVAO
croho-code66226
numerus fixusnee
honoursnee

Current-day medical practice is increasingly reliant on technology. Just think of imaging the inside of your body using MRI or CT, solving heart problems by inserting artificial valves, or measuring stress to avoid burn-out. Many disciplines are involved in creating these devices: microelectronics, information technology, and mechanical and material engineering.

As a biomedical engineer you will have knowledge of all these fields of expertise and be able to apply it to develop new devices – from evermore advanced imaging instruments to scaffolds for tissue engineering, and from sensor systems to new implants and artificial organs. As a rule, you will work with medical doctors, engineers, and biologists in multidisciplinary teams.

If you are interested in health technology, the Master's programme Biomedical Engineering offers you the opportunity to gain in-depth knowledge on a broad-range of topics. You will study topics in the fields of imaging techniques, physiological control engineering, rehabilitation engineering, implant engineering, cell and tissue engineering and infection prevention, as well as aspects of medical ethics and law. You also become well-versed in medical and biological basic knowledge.

In addition, the University of Groningen offers state-of-the-art medical facilities and a unique professional cooperation with the University Medical Center Groningen (UMCG).

Waarom aan de University of Groningen?

  • State-of-the-art medical facilities
  • Unique cooperation with the University Medical Center Groningen
  • On successful completion of this Master's degree programme, you will be awarded a diploma as Master of Science (MSc.) in Biomedical Engineering (international title). In the Netherlands, you will also be entitled to use the title of ir (ingenieur)

Studieprogramma

Unsplashed background img 2

tracks

track Medical Device Design

The track Medical Device Design deals with the design of innovative Medical Devices that will contribute to prevention of health decline, to better diagnostics and to better therapy.

Medical devices are more and more key in improvement of health care quality, but also in realizing a sustainable health care in terms of money and manpower.

For prevention of health decline, sensor systems will be designed to allow citizens to self-monitor their health condition (e.g. their stress and sleep condition); intervention systems can be designed to improve the condition of citizens (e.g. via a balance and muscle-strength trainer). ICT plays an important role in gathering and processing sensor data and advising the best interventions for an individual using self-learning decision support systems.
For improved diagnostics, innovative diagnostic instruments will be designed that are smaller, faster, more accurate, or cheaper. New technologies will be applied that make entire new instrumentation possible.
For improved therapy new or improved implants (e.g. bone plates), artificial organs (e.g. heart assist pump) and prostheses (e.g. exoskeletons) will be designed.

In the MDD track, the focus lies on three themes:

The first focus lies on the design of implants and artificial organs. During the courses Interface Biology and Biomaterials 2 the student gets familiar with biomaterials, and how their properties influence cell response. Engineering & Biotribology will prepare the student for artificial joint design and for applications where friction and wear plays an important role. Based on this knowledge, a well-considered choice of biomaterials will be made for specific applications.

The second focus lies on the design of external prosthetics and orthotics. The courses Prosthetics & Orthotics and Neuromechanics advance the students' knowledge on the topics of prostheses design and their (neuro)mechanical functioning.

The third focus lies on the design of sensors, controlled devices, robotic systems and instruments. The courses Control Engineering, Mechatronics and Robotics introduce the students to the topic of robot control and advance their knowledge throughout the courses. Mathematical programming plays an important role during these courses. The course Biomedical Instrumentation 2 informs the students about current diagnostic devices, their possibilities and limitations.

General courses support all three themes: Matlab for BME, Product design by FEM, Statistical Methods for BME, Technology & Ethics.

At the end the students that followed the track MDD will be optimally prepared for internships in the first year of the Master's and Master's project in the second year of the Master's. After graduation, the student is ready to function as a respected colleague in both academic and corporate world.

For the complete curriculum, please see: https://ocasys.rug.nl/current/catalog/programme/66226-5506

track Biomaterials Science and Engineering

This track is concerned with the design, development, analysis, assessment and application of innovative biomaterials for body function restoration and enhancement of implant efficacy.

Biomaterials are increasingly used in modern medical practice to realize solid implants such as metals, polymers, but also hydrogels and soft and porous materials used in e.g. orthopedics, dentistry/orthodontics, ophthalmology, cardio-vascular medicine and in scaffolds for tissue engineering. The BSE track focuses on biomaterial innovations (including manufacturing) and application of existing biomaterials for the use as scaffolds, coatings, micro- and nano-sized particles that enables efficient antimicrobial or therapeutic drug delivery, lubrication, diagnosis and tissue engineering, tissue models, organs-on-a-chip. A particular focus is on how medical materials behave inside the body, how microorganisms and mammalian cells/tissue cells interact with the materials, and how we can utilize and direct these interactions to enhance medical treatments

The track BSE focuses on the joined venture of materials, biology, and medicine and can be divided into three themes:

The first focus is on the characteristics and application of biomaterials in modern medicine (Biomaterials 2). Special emphasis is given on the physico-chemical surface characteristics (Surface Characterisation) and the related lubricating, chemical, colloidal and mechanical properties and technologies (Engineering & Biotribology) .

The second focus is on the biology of the biomaterial interface with human tissue. (Interface Biology) It addresses the foreign body reaction against implanted biomaterials, and emphasizes the effect of biomaterial surface characteristics on tissue integration and cellular response (Colloid and Interface Science), both having impact on tissue engineering, regenerative medicine, drug delivery and diagnosis. Special attention is given to microbial biofilm formation causing infection during biomaterial applications (Biofilms).

The third focus is hands-on experience where theory is put to the test and connected to future developments. It first entails a practical lab-training, in particular on the characterization of biomaterials and the use of sophisticated lab instruments (Integrated Lab Course in Biomaterials). A training in multidisciplinary and integrative analysis of recent biomaterial literature will provide insight in the route towards clinical application and further stimulate independent thinking and a critical attitude in science and engineering (Recent Developments in Biomaterials).

During the curriculum, various general academic and research qualities are taught as well as creating independent thinking and critical assessment of developments, which also provide a solid basis for any R&D related career. General courses support all three themes: Matlab for BME, Optical Imaging, Statistical Methods for BME, Technology & Ethics.

At the end the students that followed the track BSE will be optimally prepared for internships in the first year of the Master's and Master's project in the second year of the Master's. At every stage, integration between knowledge and practice will be performed as knowledge in both industry and academia is taught through experimental approaches founded on well-structured and formulated questions and research design.

For the complete curriculum, please see: https://ocasys.rug.nl/current/catalog/programme/66226-5515

track Medical Imaging

In the track Medical Imaging the student learns the underlying principles and the instrumentation used in current diagnostic imaging and therapy.

There are three themes where this track DII focuses on:

The first focus is Radiology. The discipline of radiology focusses on the medical specialty that aims to obtain diagnostic information by imaging techniques and treatment of patients by using minimal invasive procedures under image guidance. Apart from imaging techniques that use ionizing radiation (computed tomography, radiography, angiography, mammography), also ultrasound and magnetic resonance imaging can be used. The physical principles will be taught during the master, and during projects you will be able to work together with medical physicist on the optimization of these techniques in order to improve patient comfort and care. Dedicated courses are: Magnetic Resonance Physics, Conventional X-ray Imaging and Ultrasound, and Computed Tomography.

The second focus lies on Nuclear Medicine. This is the medical specialty that performs diagnosis and therapy using radioactive substances administered to a patient. During radioactive decay, radiation is emitted which can be measured outside the body. This enables the assessment of the 3D-distribution of the so-called radiotracers in the body, if necessary as a function of time. The strength of nuclear medicine is that this distribution is a function of the underlying physiological processes i.e. differences in uptake reflect differences is physiology which allows the visualization and quantification of diseases. Dedicated courses are: Physics in Nuclear Medicine.

The third focus lies on Radiation Oncology. This is the medical practice of treating patients with cancer using ionizing radiation. Medical physics for radiation oncology is engaged in this practice to optimize and deliver the dose distribution safely according to prescription with a required high accuracy. This involves accurate dose calculation, dose delivery and dose measurement techniques, and various forms of medical imaging. Dedicated courses are: Medical Physics in Radiation Oncology.

General courses support all three themes: Radiation Physics, Statistical Methods in BME, Matlab for BME, Technology & Ethics and Biomedical Instrumentation 2. Students also follow the course Interdisciplinary Project to learn to work in a multidisciplinary environment and to combine design and research skills.

At the end the students that followed this track will be optimally prepared for internships in the first year and the research project in the second year of the master. After graduation, the student is ready to function as a respected colleague in both academic and corporate world.

For the complete curriculum, please see: https://ocasys.rug.nl/current/catalog/programme/66226-5517

Onderwijs

taal van onderwijs100% en
avondonderwijsn.v.t.
afstandsonderwijsn.v.t.
study abroad
Exchange: All our science and engineering programmes offer possibilities to study abroad at a number of partner institutions. Our partners include top-100 universities in Europe (for example in Germany, UK, and Sweden) and in the USA, China, South-East Asia, and South America. For Biomedical Engineering, the best way to realise an exchange section in your programme is by choosing to do an internship and/or Master's project abroad.

Toelating en kosten

startmomenten

1 september 2024

aanmelding deadline : 1 mei 2024
wettelijk tarief : € 2530 (€1265 in het eerste jaar)
instellingstarief : € 19900
niet-EU/EER studenten : € 24200

1 september 2025

aanmelding deadline : 1 mei 2025
collegegeld nog niet bekend

The Board of Admissions will decide whether you can be admitted to the Master's degree programme.

Please fill out this checklist to describe why you are applying for this Master's degree programme (questions to be addressed are outlined in the form).




toelatingseisen

vooropleiding
A university bachelor's degree in Biomedical Engineering. A bachelor's degree from the University of Groningen in Life Science and Technology (major Biomedical Engineering), in Physics (track Biophysics and Medical Physics), or in Applied Physics (with the courses Molecular Biophysics, Modelling Life, Cellular Chemistry).

Applicants holding a university bachelor's degree in Human Movement Sciences, or a non-university bachelor's degree in Electrical Engineering, Mechanical Engineering (etc.), may be admitted, but they will first be subjected to an individual pre-master programme (approx. 45 ECTS). This is merely an indication of required background knowledge. The Admission Board determines whether the specific contents of this/these course(s) meet the admission requirements of the master's programme for which you applied.

Information about admission possibilities and requirements for students from a Dutch HBO institute is published on: https://www.rug.nl/fse/education/admission-application/

taaltoets
Sufficient English proficiency on VWO level is required.

studie kosten
bron: University of Groningen
bedrag kostenpost
€ 9500.00levensonderhoudper jaar
€ 75.00inschrijvingsgeldin het eerste jaar
€ 500.00studiematerialenper jaar
€ 750.00visa/permitper jaar

De stad

studievereniging

GLV Idun
Groninger LevenswetenschappenVereniging Idun is the study association for Biology, Life Science & Technology, Biomedical Engineering, and their connecting master programs.
The association organises various activities, from social activities, like our weekly drinks, or even traveling abroad. In addition, Idun also organizes career/education-related activities like company visits and lunch lectures. GLV Idun contributes to a fun student time by bringing students together, and preparing her members for their career ahead!

aan het woord: studenten en docenten

Lara Saber
The BME programme has equipped me with a solid foundation for my future career.

Lara Saber - Student of the MSc Biomedical Engineering

After completing my Bachelor's programme, I knew that the Master’s degree in Biomedical Engineering (BME) would be the perfect addition to my educational journey. I was particularly drawn to the Medical Device and Design track, as I had enjoyed the design courses in my Bachelor's programme.Currently, I am working on a project with the UMCG and Martini Hospital, which has provided me with great knowledge about the different aspects of designing and all the regulations involved in the process...
I am motivated every day to do my very best to provide these patients with a suitable treatment. I hope that our device will be effective and improve the quality of life of patients globally.The BME programme has equipped me with a solid foundation for my future career. The courses, assignments, and internships have provided me with great preparation for the future, and the opportunities that come along with the programme have been instrumental in my growth as a Biomedical Engineer.I am excited to see how my project develops and to graduate soon to start applying my knowledge in the medical device field to help patients worldwide. Overall, I am very satisfied with the BME programme in Groningen, and I would highly recommend it to anyone seeking to become a Biomedical Engineer.


lees verder ...
Vera Zut
Many people worldwide need rehabilitation, and I think robotics have a lot of potential to improve and fasten this process

I have always been interested in healthcare and technology, which is why I chose to study the Bachelor's degree in Biomedical Engineering. Developing high-tech systems for medical purposes is fascinating to me, so I chose to do the Medical Device Design track. You get to learn every aspect of (bio)medical engineering, like implants and artificial organs, external prosthetics and orthotics, sensors, controlled devices, and robotic systems and instruments. The area I personally like the most is the controlling and robotics field...
I will soon start my internship at a research department of a company where I will investigate the calibration of sensors in motion capture used for rehabilitation purposes. I look forward to applying the knowledge I have gained to add something to society. Next year, I would like to do my graduation project somewhere abroad in the field of robotics for rehabilitation. Many people worldwide need rehabilitation, and I think robotics have a lot of potential to improve and fasten this process. I am curious to see what the future will bring, as there are so many possibilities after doing MSc Biomedical Engineering. Since I really like doing research into innovative products, my next career step might be to become part of a research & development team of a company or do a PhD or EngD.


lees verder ...
Laetitia Vicari
The programme is a great foundation for working in academia or industry as the courses are very diverse and encompass the knowledge required for biomedical engineers.

Laetitia Vicari - Student of the MSc Biomedical Engineering

After finishing my Bachelor’s in Chemical Engineering, I wanted to study a Master’s programme that was more directly related to clinical applications and to improving human lives through medicine and technology. I chose the Biomaterials Science and Engineering track and I really love it. Learning about regenerative medicine and biomaterials is very appealing. So too is seeing how human physiology and technology intertwine to create new fields of science...
As I have discovered a passion for organ transplantation, my next career step is organ perfusionist training or working in the biomaterials or medical devices industries. The programme is a great foundation for working in academia or industry as the courses are very diverse and encompass the knowledge required for biomedical engineers . The most valuable thing I have learned is to think critically, to always make solutions more optimal and efficient, adding value to the medical world. I am looking forward to going on to the next step in my career and finding a job in the biomedical industry.


lees verder ...
Studying Biomedical Engineering at the University of Groningen

Rutger
Rutger shares his experiences as an alumnus

studenten

Keuzehulp

Unsplashed background img 2

Studievergelijker

1/4 University of Groningen
Biomedical Engineering
€ 303 gemiddelde kamerhuur
12 eerstejaars
66% vrouw
? uur contacttijd/week
2/4 Delft University of Technology
Biomedical Engineering
€ 312 gemiddelde kamerhuur
74 eerstejaars
50% vrouw
? uur contacttijd/week
3/4 Eindhoven University of Technology
Biomedical Engineering
€ 280 gemiddelde kamerhuur
83 eerstejaars
?% vrouw
? uur contacttijd/week
4/4 University of Twente
Biomedical Engineering
€ 250 gemiddelde kamerhuur
? eerstejaars
NAN% vrouw
? uur contacttijd/week
disclaimer: bovenstaande cijfers en beoordelingen zijn aangeleverd door de opleidingen zelf. Wij kunnen de juistheid niet garanderen.

Na de studie

Unsplashed background img 2

Beroepsperspectief / arbeidsmarkt

There are a wealth of employment opportunities once you have completed the Master's in Biomedical Engineering. The multidisciplinary nature of Biomedical Engineering adds significantly to your employment options in research, design, and management-oriented jobs.

Biomedical engineers may contribute to research, to engineering design and product development, to business, managerial, quality, and regulatory aspects of engineering, and to the safe introduction of technology in hospitals. Biomedical engineers are also experts who can advise on the development of long-term strategies and policies in the field of medical life sciences:

* In the industry, a BME alumnus can become a member of the R&D-department, work on innovative product development or improve existing ones. In large companies biomedical engineers are educated to organize clinical trials in hospitals.

* In universities or research institutes, a biomedical engineer can work as a PhD-student for 4 years on a scientific project, e.g. evaluation of new diagnostic imaging techniques, development of novel biomaterials or implant prototypes. Another possibility as PhD-student is to work on the application of new therapeutic techniques in oncology or design of new prostheses.

* In hospitals, a biomedical engineer can work as a safety officer to increase patient safety by introducing training sessions on applying new diagnostic tools or new artificial organs.

* Government organizations can hire BME alumni to work on certification of new medical devices, new Master’s programmes, or new legislation.

* When you follow the Medical Imaging track, you might be eligible to start a post academic training in Medical Physics. As a medical physicist you are a clinical specialist in health care with practical knowledge of physics and technology. You are responsible for the safe and responsible introduction of new and existing medical equipment and technology for optimization of diagnostic imaging and treatment.

* You can become an entrepreneur, start your own company to further develop the medical device that you designed during your Master’s project, patent it, write a business plan and finally bring it to the market



aansluitende masteropleidingen

instellingopleidinginstroomeisen
Utrecht UniversityLeraar VHO biologie full-time,part-time educational+ aanv. eisen
Utrecht UniversityLeraar VHO natuurkunde full-time,part-time educationalgeen aanvullende eisen
Utrecht UniversityLeraar VHO scheikunde full-time,part-time educational+ 30 EC pre-master
University of AmsterdamLerarenopleiding Scheikunde educational+ 21 EC pre-master
Eindhoven University of TechnologyLeraar VHO Natuurkunde educational
Delft University of TechnologyLeraar VHO Natuurkunde educational
Eindhoven University of TechnologyLeraar VHO Wiskunde educational
Delft University of TechnologyLeraar VHO Wiskunde educational+ 42 EC pre-master
Delft University of TechnologyLeraar VHO Scheikunde educational+ 27 EC pre-master
bron: doorstroommatrix.nl

Potentiële beroepen

beleidsmedewerker volksgezondheid
hoogleraar biologie
hoogleraar cybernetica
universitair (hoofd)docent biologie
universitair (hoofd)docent cybernetica
wetenschappelijk onderzoeker biologie
wetenschappelijk onderzoeker cybernetica
bron: UWV

Contact

Academic Advisors FSE

For questions regarding the programme

studyscience@rug.nl Study Science

For students who are interested in a Campus Tour or who have other general questions

Meer informatie?
Bezoek de website van deze opleiding.

open_in_newstudy website